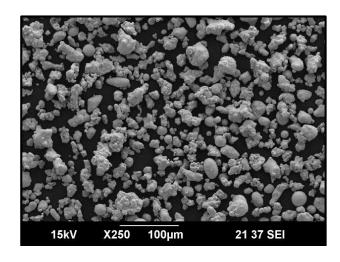
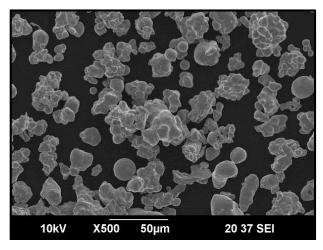
ATOMET FEAM

ATOMET FeAM is a high purity iron powder suitable for additive manufacturing applications.

Typical physical properties


Apparent density 3.10 g/cm³


Typical chemical composition (%w)

Iron	> 99.5%
Manganese	0.04%
Carbon	0.004%
Oxygen	0.08%
Sulfur	0.007%
Nitrogen	0.004%

Typical particle size distribution

d ₁₀	15 μm
d ₅₀	30 µm
d ₉₀	45 μm
d ₉₉	60 μm

ATOMET FEAM

Technical data

The following technical data are provided for information purposes only. The properties reported here were obtained by printing ATOMET FeAM with an EOSINT M 280 printing machine (powderbed selective laser melting) with optimised process parameters.

General process data

Typical achievable part accuracy (small part < 80 x 80 mm) ¹	Approx. ± 30 μm
Minimal wall thickness	Approx. 0.2 mm
Surface roughness (as manufactured)	
- Layer plane (xy)	R _a 4 μm (0°)
- Build direction (z)	R _a 8 μm (90°)
Surface roughness (after shot-peening)	
- Layer plane (xy)	R _a 5 μm (0°)
- Build direction (z)	R _a 5 μm (90°)
Volume rate (total build speed including recoating)	8 cm³/h
Achievable density	7.80+ g/cm ³

Mechanical properties

	As-build	Stress-relieved ²
Yield strength - Layer plane (xy) - Build direction (z)	550 MPa 450 MPa	460 MPa 450 MPa
Tensile strength - Layer plane (xy) - Build direction (z)	600 MPa 500 MPa	510 MPa 490 MPa
Elongation - Layer plane (xy) - Build direction (z)	Approx. 13% Approx. 13%	Approx. 19% Approx. 16%
Modulus of elasticity - Layer plane (xy) - Build direction (z)	Typ. 210 GPa	

 $^{^{\}rm 1}$ Following a standard EOS calibration procedure (optimised beam-offset). $^{\rm 2}$ Stress-relief heat treatment : 30 minutes at 600°C.